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Surge/Wave vs. Vegetation

\egetation attenuates waves and surge, while it is stressed by waves and surge.



Marsh Edge Erosion by Waves and Surges

Louisiana has lost 1,829 square miles of land since the 1930's (Barras et al. 2008, Britsch and
Dunbar 1993)

Between 1990 and 2001, wetland loss was approximately 13 square miles per year- that is the
equivalent of approximately one football field lost every hour (Barras et al. 2008). According to
land loss estimates, Hurricanes Katrina and Rita transformed 198 square miles of marsh to open

water in coastal Louisiana (Barras et al. 2008).




Studied Vegetation Species I:

Spartina alterniflora Loisel.

http://plants.usda.gov/maps/large/SP/SPAL.png  Spartina alterniflora at Terrebonne Bay, LA (4/4/2011)



Studied Vegetation Species I1I:

Juncus roemerianus Scheele

Black needlerush

Juncus roemerianus

X Photo by Ann Murray
Y © 2000 University of Florida

http://plants.usda.gov/core/profile?symbol=JURO



Smooth Cord Grass Bending Stiffness

« Measurement Procedure:
— Total plant height and stem height are measured
— A clip is attached at half the stem height
— Plants are pulled to a 45° angle
— Force needed is measured with a force gauge

— Plant is cut at base and maximum stem diameter Is
measured
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Bending Stiffness, E (N/m?)
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Zonation of eight experimental transects
at Grand Bay and Graveline Bayou, MS
(four coastal transects)
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Zonation of eight experimental transects
at Grand Bay and Graveline Bayou, MS
(four inland transects)
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Vegetation characteristics of low and high marsh
zones combined In eight transects

Zones | Dominant | Live standing' Dead standing 'Mean Rhizome |
species | shoot heights shoot heights % thickness

| ~m | (m)  cover (cm)
Low Spartina 0.45-1.40 0.30-0.75
marsh  alterniflora  (0.85) (0.54) 71.41  0.49
zone Juncus 0.78-1.45 0.67-1.52

romerianus,  (1.17) | (1.04) | | 0.54
High Spartina 0.78-2.30 0.83-1.45
marsh | alterniflora  (1.34) (1.11) 80.50 0.54
zone Juncus 1.40-2.30 0.8-1.75

\romerianus|  (1.73) | (1.30) | 0.58
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Short- term Rapid Deployment during Tropical Storm/
Hurricane
(Tropical Storm Ida Measurements)
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surge analyzed
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Tropical Storm Ida Deployment —Gage Locations
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Significant Wave Height (m)

Tropical Storm lda:
Measured Wave Height Attenuation
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Wave gages
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Details of wave gage locations
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Spatial variation of measured wave heights at four marsh gages for various ranges of submergence
ratio, a, at gage W1. Number of records in each range is given by n. Symbols indicate mean values
and vertical bars are +1 standard deviation. Using a from one gage only for classification ensures
that the same waves are followed across the transect to compute the mean.
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Drag Force of VVegetation ]

= 1

|:D — ECDPNVA/ ‘Uv L]Pv

For submerged vegetation, Stone and Shen’s (2002) method:

0.5
U, =n, (%j U

Vegetation
U° hv U Vi .
h h e/getatmn
[ [
. e
(a) Emergent (b) Submerged
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Wave Energy Dissipation through Vegetation
(Mendez and Losada, 2004)

3 - 3 -
0o, 1 HSC.b.N., ( kg j sinh®(kah) +::>smh(kah) He
N 20 3k cosh®(kh)

Assumptions:
(1) Linear waves
(2) Impermeable bottom
(3) Invariant Rayleigh wave height distribution
(4) Thornton and Guza’s wave breaking criteria

b, = plant area per unit height of each vegetation
stand normal to horizontal velocity (m)

N, = number of vegetation stands per unit horizontal
area (m2)

C,, = drag coefficient for irregular waves

H, . = root-mean-square wave height (m)

Terrebonne Bay, LA, 5/3/2009
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10

Estimated C q

Estimated Vegetation Drag Coefficient C,
using Dalrymple (1984)
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1.22m

Laboratory Experiments
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Live Vegetation
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Rigid Model:Vegetation
Water depth: 50 cm

Wave height: 10.2 cm
Wave period: 1.2 s

Veg.Density: 623 stems/m’?

Veg. span: 3.6 m




Video (Live Vegetation)




Wave heights affected by

different vegetation

Wave Height — H/Hi

Wave Height — H/H

Wave Height - H/H

Wave Height — H/Hi

(a) Rigid model, N, =156 m™, h =0.63m, G =2.39

(b) Rigid model, N, =350 m2, h,=0.63m, C, =2.49
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B -8

0.8r

— Video data
- — - — Fitted line (video data)
A Gauge data (Control runs)
— — — Fitted line (Control runs)
O Gauge data

0.4
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(c) Rigid model, N =350 m™, h =0.48 m, C, = 1.97
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Fitted line (Rigid models)
10° - = = Fitted line (Flexible model) 1
| == Fitted line (S. alterniflora, dormant) ]
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++++ Fitted line (J. roemerianus, green) i
— — - Fitted line (Rigid models, constricted velocity) []
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KC — Keulegan-Carpenter number

Average trends of the drag coefficient for rigid, flexible and live vegetation models under regular

waves.
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Sloping Beach Experiments
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SetupDemo_Ho82mm_T1d8s_h400mm_slope1to21.mov

Wave Runup Experiment using Rigid Model
Vegetation




Wave Runup Experiment using Flexible Model
Vegetation

o ¥

Flexible
‘ vegetation on
T sloping beach
\\ profile




Flexible Model Vegetation
\

‘1\\‘ ax\". /
o <

Polyurethane tubing is the
closest match to S. Alternifliora

in terms of elastic properties
when the model to prototype
ratio is 1:3.

EPDM rubber Polyurethane Model
E (GPa) 3.86E-03 3.59E-02 9.46E-02

El (Nt*m?2) 1.60E-05 1.41E-04 1.17E-04

ks

Prototype

2.83E-01
(LSU team)

2.84E-02
(Feagin, 2010)




Computational Modeling of Wave
Attenuation by Vegetation
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Models Used for Wave Attenuation ]

1-D/2-D shallow water flow models with HLL
approximate Riemann solver (\Wu and Marsooli,
2012)

1-D Boussinesq wave model

2-D vertical Navier-Stokes model with VOF

3-D Navier-Stokes models with VOF (Marsooli and
Wu, 2014)

2-D spectral wave transformation model

3-D shallow water model coupled with spectral wave
transformation model (\Wu, 2014)
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Depth-Averaged 2-D Model for Long Waves [

(Wu and Marsooli, 2012)

Governing equations:
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Drag Force of Submerged Vegetation ]

= 1

|:D — ECDPNVA/ ‘Uv L]Pv

For submerged vegetation, Stone and Shen’s (2002) method:

0.5
U, =n, (%j U

Vegetation
U hv U Vi .
h h e/getatlon
e
A g ‘ e e rr
(a) Emergent (b) Submerged

42



Clarkson

Solitary Wave Run-up (SWE Model) B

Experimental study: Synolakis (1986)

(@) Non-breaking wave for H/H,= 0.0185
(b) Non-breaking wave for H/H,= 0.04
(c) Breaking wave for H/H,= 0.3
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Non-Breaking and Breaking Wave Run-up over a Breach m
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Breaking Wave Run-up on Vegetated Beach

04F
03F
*02F
0.1f
ok

02F

01F

-0.1

05¢
04F
03Ff
02F

01F

-0

05¢
04F
03Ff
02F

01F

-0.14

() t*=15

120 15 10 5 0 5 10
X*
. () t*=25
20 15 10 5 0 5 10
X*
—-—— (e) t=35
20 5 10 5 0 5 10
X*
e = (g) t*=45
20 5 10 5 0 5 10

X* -

Run-up of H/H,=0

04F
03F
*02F
0.1Ff
ok

*o02f

o02f

02f
0.1Ff
0 E

0.1

Clarkson

m "

(b) t*=20

15 10 5

5 10

(d) t*=30

15 10 5

F—
——
—_—
—_—

5 10

() t*=40

10 5

Beach

Calculated (with vegetation)

Calculated (without vegetation)

5 10

(h) t*=50

10 5

*

20 5

5 10

.3 solitary wave on 1:19.85 vegetated beach



Clarkson

Solitary Wave through Vegetated Channel ]
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Simulations by Wu'and Marsooli (2012), and experiments by Huang et al. (2011)
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3-D RANS Model with VOF (Marsooli and Wu, 2014) (RN

Veu=0

ou 1 1, 1
—+Ve(Uu)=—-Vp+—F +—=Ve VU
o T VAU = VP TV e(4VU)

F
a_ + VQ(FU) = O F=0.4 F=0
5’[ Air
F=1
Water
« Empty cell: F=0 sucface
e Fluid cell: F=1

« Surface cell: 0<F<1 F
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Drag and Inertia Forces of Vegetation e |

1 ou.

f. = 2,oCD(,)N bu,/uu +pC,N s —

where €, =drag coefficient
Cy =inertia coefficient
N, =density of vegetation (units/m?)
b, =front width of vegetation stem
s, =horizontal coverage area of vegetation

p =fluid density

Vegetation

D
Ik

egetation

B

(a) Emergent (b) Submerged
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Test of 3-D RANS Model

Vegetation patch

Wave maker
-

l< sle sle sle |
I< ) < e B |

3l m 12m 20 m 37m

Experimental runs of Stratigaki et al. (2011) tested by the present model

Still water Incident wave Wave Vegetation _
Case depth height period density Calibrated

he (M) H, (m) T (s) N, (stems/m?) Co
1 1.8 0.44 4.0 360 0.8
2 1.8 0.44 3.0 360 0.9
3 2.0 0.43 3.5 360 1.6
4 2.0 0.33 3.0 360 1.0
5 2.2 0.44 3.0 360 1.0
6 2.4 0.36 3.0 180 1.9
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Test of 3-D RANS Model

Clarkson

067

(a) case 1

02 7.6 8 10 12 14
X (m)

067
: (c) case 3

02 A6 8 10 12 14
X (m)

0.67
’ (e) case 5

0.25

8 10 12 14

H (m)

H (m)

H (m)

067

0.4F

0.3

(b) case 2

(f) case 6

(o)

6 8 10 12 14
m

Calculated (solid
line) and Stratigaki et
al. (2011)
experimental (circles)
wave height profiles
inside the vegetation
patch. x denotes the
longitudinal distance
from the upstream
edge of the vegetation
patch; vertical dashed
lines denote the
boundaries of the
vegetation patch.
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Test of 3-D RANS Model

Clarkson

z(m)
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151

z(m)

(b) GA

Calculated (solid line) and Stratigaki et
al. (2011) experimental (circles)
vertical profiles of maximum and
minimum stream-wise, u, and vertical,
w, velocities for case 1; Horizontal
dashed line denotes the vegetation
height.

Points GA, GB, and GC are located 0.7
m upstream of the upper meadow edge,
2 m downstream of the upper meadow
edge, and 2.7 m upstream of the lower
meadow edge, respectively.
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Test of 3-D RANS Model

Clarkson
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rigid 0.4 0.1200 > 17 runs o_f NSL
rigid 0.4 0.0533 1.8 1.7 eXperlme_nts
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flexible 0.4 0.0873 1.2 13 the present
flexible 0.4 0.0551 1.2 1.4 model
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Test of 3-D RANS Model

0.15¢ , , 0.15¢
- (a) case 1 : : - (b) case 2
0.1} 0.1f

H (m)
H (m)

0.05¢ 005}

0.15

0.1

H (m)

0.05

| | (f) case 6

4 4

-4 -2 0 -4 -2 0

2 2
x (m) x (m)
Calculated (solid line) and NSL experimental (circles) wave height profiles inside the vegetation
patch for rigid vegetation and sloping bed. x denotes the longitudinal distance from the toe of sloping
bed; vertical dashed lines denote the boundaries of the vegetation patch.
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Test of 3-D RANS Model
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Calculated (solid line) and NSL experimental (circles) wave height profiles inside the vegetation patch
for flexible vegetation and sloping bed. x denotes the longitudinal distance from the toe of sloping bed,;
vertical dashed lines denote the boundaries of the vegetation patch.
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Random Waves t

nrough Vegetated Flume
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3-D Phase-Averaged Shallow Water Flow Model S5

(Wu, 2014)
Governing equations:

ou_a(uu) a(vu) a(wu) _ 1dp, 1 ( 491, g[7%P dzj
ot ox oy oz p OX

8( Guj 0 ou 8( 8u) 10S 105, 1
+— |V — |+ =—| Vg — |+ —| Vu — =Y f +fv
OX ox ) oy oy ) oz o) p ox poy p

v o) o(w)  owv) _ 1 0p, 1(/,0 ‘9’7+gj”8—pdzj

ot oOx oy 0z 0 oy
8( ij 0 oV 8( 8V) 105, 105, 1

+— Vin — +— Vin — +— Viw — ________fy_fcu
OX oX) oy oy ) 0z oz) p ox p oy p
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Eddy viscosity:

= (0 S+ (0[5

where |S,| and |S,| are shear strains in the vertical and horizontal directions; /., is the
vertical mixing length: =«A1-z/h)/2 when z<2h/3 and =2«h/3%2 when z>2h/3; and /, is
the horizontal mixing length = x min(/, ¢,/). Here, zis the vertical coordinate above the
bed, /is the horizontal distance to the nearest solid wall, /A is the flow depth, «is the von
Karman constant, and ¢, is a coefficient which is set as about 0.3 in this study.

Bed shear stress

2 2 2 2 2 2
. :,ocfub\/ub +vy +0.3U. Thy =,ocfvb\/ub +vy +0.3U.

where v, and v, are the x- and p~velocities near the bed; ¢ is the bed friction coefficient;
and U, is the maximum orbital bottom velocity of wave.
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Coupled with 2-D Spectral Wave Model (CMS-Wave)

(€ in LM LB

Spectral wave-action balance equation (Mase et al. 2005):

o(c N 2
oN L OC NI €, )+8(C9N) _ k| 9 CC, cos? o N —ECCg cos? 02 I;I
ot ox oy 00 2o oy ) 2 oy

- N-Q,+Q

where N = E(x,y,0,0,t)/0; E is the spectral wave density representing the wave energy per unit water
surface area per frequency interval; o is the wave angular frequency (or intrinsic frequency); @ is the
wave angle relative to the positive x-direction; C and C, are wave celerity and group velocity,
respectively; c,, c,, and c, are the characteristic velocities with respect to x, y and 6, respectively; «, is
an empirical coefficient; ¢, is a parameter for wave breaking energy dissipation; Q, represents the
wave energy loss due to vegetation resistance; and Q includes source/sink terms of wave energy due to
wind forcing, bottom friction loss, nonlinear wave-wave interaction, etc.

¢, =C,cosd+U c, =C,sind+V

C, =— o Siﬂ@Q—COSQ@ +cos«93im9ﬁ—cosze%+sin2Hﬂ—sinecoseﬂ
sinh 2kh OX OX oy OX
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Wave Energy Dissipation by Vegetation
(Mendez and Losada, 2004)

Assumptions:
(1) Linear waves
(2) Impermeable bottom
(3) Invariant Rayleigh wave height distribution
(4) Thornton and Guza’s wave breaking criteria
(5) Without current

® sinh®(kah) + 3sinh(kah) 3

1 kg
———_ pC.b N, | —=
Q 2«/7zp oY V[zaj 3k cosh®(kh)

H_ . = root-mean-square wave height (m)

rms

rms
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Total Energy Loss by Vegetation in Case of
Currents and Waves Coexisted

i cwi VTV T CW

Qw=%joTj Fu dzdtN—jj F,u,,dzdt == H = pCo N b,u dzdt

Consider u,,=u.+u,,

¥

Q, :% [ jO““% pC, N, b usdzdt]+ = j j S 5CoN,b,u,uzdzdl

Due to current l Due to waves
l Related to both current and waves

_ _ Considered thru wave energy
Con5|detred thru Ctl'rag force in the > dissipation in wave-action balance
momentum equations equation

1.7 end ,
N ~PCoN,b,u;dzdt
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Wave Dissipation by Vegetation in Case of

Currents and Waves Coexisted

The method of Mendez and Losada 1s modified as

1

> sinh®(kh, ) + 3sinh(kh, ) He

kg
= C.ob N
Qv 02\/710 D¢v v(zo_j

by Introducing a correction

factor:
U m
:1 c
¢=1+ a(uwm ]

where U, is the current velocity and U, is the
maximum orbital bottom velocity of wave. m=1.25
and a=0.63, which are approximated using Li and
Yan’s (2007) data.

3k cosh®(kh)

rms

Mcasured by Li &Yan
Calculated by Li&Yan

Curve fitting

33
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Wave Radiation Stress B

Formula of Mellor (2008)

w o kK (f)k.(f 2 ’ inh? '
s, = [ {k(PE(F0) (1) ,2( ) cosh?k(h+2) s sinh”k(h+2) +8 o (,0) Wdadf
boJo ) k(f)*> sinhkDcoshkD " sinhkDcoshkD

where E Is the wave energy, K is the wave number, & is the angle of
wave propagation to the onshore direction, f is the wave
frequency, h is the still water depth, D is the total water depth, z’is
the vertical coordinate referred to the still water level, and Eg is a
modified Dirac delta function which is 0 if z#n and has the
following quantity:

|" Epdz=E/2
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Flow in Channel with Submerged Vegetation

Experiment by Lopaz and Garcia (1997) TITEE N

i

|

YyYyvyvyy

U h V?getation

h,

F i A S

Rigid: Wooden cylinders
Flexible: Plastic drinking straws

Exp. | Discharge Flow Bed slope Vegetation N,D, Vegetation Drag
No. (m3/s) | depth (m) type (1/m) | height (m) | coefficient
1 0.179 0.335 0.0036 Rigid 1.09 0.1175 1.1
9 0.058 0.214 0.0036 Rigid 2.46 0.1175 1.1
13 0.179 0.368 0.0036 Flexible 1.09 0.152 1.2
17 0.078 0.279 0.0036 Flexible 2.46 0.16 1.3
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Flow in Compound Channel with Vegetated Floodplain

rkson
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Random Waves through Vegetated Flume
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Side View of Wave Runup
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Summary PR

Effects of vegetation have been extensively investigated by
field and lab experiments and numerical modeling.

A large set of data have been collected and used to analyze the
vegetation drag coefficient and wave energy dissipation.

A series of numerical models have been developed to quantify
the wave and surge reduction.

The models have been tested using a number of laboratory
experiments.

The drag and inertia forces of vegetation are included in the
2D/3D momentum equations and the wave energy loss due to
vegetation resistance Is in the wave-action balance equation.

The interaction between currents and waves Is considered
through a correction factor in the wave dissipation rate.
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